
The ColdFusion 8 Debugger Explained:
Interactive Step Debugging for ColdFusion 8

by Charlie Arehart

M
any CFML developers have felt that the one thing missing from their arsenal of tools

was an interactive step debugger. Until now, step debugging in ColdFusion required

FusionDebug, a third-party tool I introduced to readers in Volume 1 Issue 2 of this journal.

ColdFusion 8 now includes its own CFML step debugger, and in this article, I’ll introduce

readers to the concept of step debugging and to the tool in ColdFusion 8, without presuming

you’ve read the earlier article or used FusionDebug. In the sidebar below, I’ll explain why

developers, even those who dismiss debuggers, should give them serious consideration. I

think perhaps you’ll see some aspects of the tool that exceed your expectations.

What is Interactive Step Debugging?
Interactive or step debugging has got nothing to do with the debugging output at the

bottom of your CFML page. Have you ever wished you could watch as your program

executes from line to line? That’s exactly what a step debugger does for you. You can set

breakpoints on any line of CFML code, and, in the case of the CF8 debugger, set it to stop on

a line of code in error. You can step into your include !les, custom tags, functions and CFC

methods, watch the values of expressions and variables, and do much more.

Such tools are common in languages like Java, .NET, Javascript, Flex and Flash. CFML

developers who have not used those languages may not even have noticed that we’ve

lacked a debugger. ColdFusion 4 and 5 did have interactive debugging, by way of ColdFusion

Studio, now HomeSite+, but Macromedia/Adobe chose not to carry that feature forward

into ColdFusion MX. In 2006, Intergral GmbH introduced FusionDebug, a tool that brought

step debugging to ColdFusion MX. Now Adobe has included a debugger in ColdFusion 8

(which works in all editions of the product).

While FusionDebug is a commercial product and the ColdFusion 8 debugger (“the CF8

debugger” for the remainder of this article) is free, note that FusionDebug also works with

ColdFusion 6 and 7. The two tools are very similar, though, and I’ll discuss the di"erences at

the end of the article.

Both CFML debuggers allow you to trigger the debugging session not only in the

development environment, but also in any browser, or indeed from any kind of client that

can make requests to CFML pages — CFM or CFC !les — on your server. Naturally, this

powerful feature may cause some concerns about security, which we’ll address later.

About the ColdFusion 8 Debugger
Like FusionDebug, the ColdFusion 8 debugger is an Eclipse plug-in, leveraging the

underlying debugging capabilities built into Eclipse. FlexBuilder is an Eclipse plug-in as well,

and also provides debugging which leverages the underlying Eclipse debugging features.

If you don’t use Eclipse currently, you may worry about having to switch editors. First, note

that you don’t need to give up your favorite CFML editor, DWMX, CF Studio, HomeSite+,

CFEclipse, or whatever. Further, you need to know only minimal Eclipse functionality—

87 Tools The Fusion Authority Quarterly Update

Why Use a Step Debugger?
What advantages does a debugger o"er over CFOUTPUT and CFDUMP, and other

such techniques? Here are just a few ways in which interactive step debugging can

solve problems a CFML developer might otherwise !nd very di#cult.

You can’t always use CFOUTPUT or CFDUMP
CFDUMP and CFOUTPUT create no output when OUTPUT=”no” has been set in

CFCOMPONENT or CFFUNCTION, or when CFSILENT has been used, which you may

!nd used in frameworks and complex applications. In both cases, you may try to

disable those features but that may introduce errors or unexpected results due to

other code that was relying on them, so that isn’t always an option. You could also

use CFTRACE or CFLOG to send output to a !le, but this is nowhere near as simple as

viewing variables in the debugger.

Sometimes you are outputting to Flex, Ajax or Web Services — not a
browser.
You can’t always reasonably add debugging output to code that is called by a Flex or

Ajax client, or a web service. CFDUMP typically creates a big HTML table, an issue if

the client is expecting XML. The CFML debuggers, however, can debug CFML pages

requested from Flex, Flash, Flash Remoting, Ajax or web services clients. In fact, they

can intercept any kind of requests for a CFML page including scheduled tasks, event

gateways, the new CFTHREAD, or events in Application.cfc like onSessionEnd or

onApplicationEnd.

You can intercept and debug a request from any user — on remote
machines or in production!
The CFML debuggers can intercept and show the step-by-step execution of any CFML

page run by anyone in any manner. It’s not limited to requests you trigger yourself.

You can use it to debug someone else’s request. This allows debugging of strange

problems on production or test servers that you can’t recreate in development. A real

end user can run a request that’s causing a problem while you watch. Of course, this

capacity is a two-edged sword. You can’t currently limit debugging to be shown only

for requests from some given user, so it will impact anyone who makes the request

while you have debugging enabled. But the CF8 debugger only intercepts the !rst

request received. Another person can request the same page while the other is being

debugged and that request will not be debugged. The debugged user meanwhile

would see the page hang until the developer responded to let the page proceed.

There are performance and security impacts in enabling debugging, so you should

think carefully about leaving it enabled all the time in production.

There’s no need to change your code.
If you use CFOUTPUT and CFDUMP, you have to remember to remove those tags when

you are done debugging. How often do we see code still showing debug output?

which is very easy to learn—to use the CF8 Debugger. You can just use the Eclipse-based

debugger to do debugging and then go back to your favorite editor if you really prefer.

88 Tools The Fusion Authority Quarterly Update

Getting Started
You will need both:

the Eclipse IDE (Integrated Development Environment), which is a free download from � eclipse.org

the ColdFusion 8 Eclipse Extensions, which are free from � Adobe.com

Download and install the free Eclipse IDE, unless you already have it installed. You might

already have it if, for instance, you have FlexBuilder or CFEclipse. You can obtain it at

http://www.eclipse.org/. The CF8 debugger is supported on Eclipse version 3.1.2 or 3.2.

Installing Eclipse is beyond the scope of this article, but the good news is that it’s really just

a matter of saving the provided Eclipse directory onto your !le system and running the

Eclipse executable (such as Eclipse.exe on Windows). The Eclipse site explains installation on

all supported operating systems.

Now download and install the ColdFusion 8 extensions for Eclipse, a zip !le available at

http://www.adobe.com/support/coldfusion/downloads.html#cfdevtools. The process is very

There’s no need to have write access to the code.
What if you need to debug some code that is protected so that you can’t edit it

anyway? Debuggers don’t require you to have write access. When you’re in

production or on a server where you don’t have edit permissions, this can be a

valuable bene!t.

You don’t need to enable ColdFusion’s debugging output.
Similarly, if you don’t have access to turn on ColdFusion 8’s debugging output, you

can still use the debugger.

CFDUMP will not always su"ce to solve a problem.
When you are at a breakpoint, you can see the value of all variables in all scopes. The

CF8 debugger has a very easy-to-use tree view of the scopes. This includes query

results. And since you can see everything, you may be able to learn something about

the variables or make connections that you might not have thought of otherwise.

You can discover the #ow of execution of the request.
Debuggers will display a clear visual representation of the %ow of a request. You

can readily see whether the code went into a certain IF statement or loop, or if it

included a !le or called a custom tag or method. This is also a great way to introduce

a new developer to your code or to CFML in general.

The debugger stops on error.
This capability in the CF8 debugger puts you in the editor at the line and page where

the error occurred. This especially helps if you have debugging output disabled or

restricted.

You can view the stack trace during execution.
Output from traditional ColdFusion debugging shows at the end of the page

request what !les were called to run the entire request, but that doesn’t really help

you understand which were opened just to get to a particular line of code. In the

CFML debuggers, the stack trace pane displays all the !les you opened to get to any

breakpoint.

The Fusion Authority Quarterly Update Tools 89

easy, and you’ll !nd instructions on the installation in the ColdFusion 8 manual, Installing

and Using ColdFusion, in the chapter “Installing Integrated Technologies”, available online

at http://livedocs.adobe.com/coldfusion/8/htmldocs/othertechnologies_11.html.

The next step is to enable debugging in the ColdFusion Administrator (separate from

the traditional debugging), as well as to set the port on which the debugger will listen,

and also to enable ColdFusion RDS (Remote Development Services). See “Setting

up ColdFusion to Use the Debugger” in the chapter of the ColdFusion Developer’s

Guide entitled “Using the ColdFusion Debugger”. There you will also see discussion

of a minor di"erence in setup for ColdFusion’s multiple instance (Multiserver) or J2EE

con!gurations versus the standalone Server con!guration. This chapter can be found at

http://livedocs.adobe.com/coldfusion/8/htmldocs/help.html?content=usingdebugger_1.html.

Finally, you’ll need to con!gure Eclipse itself in a couple of ways, which are also

discussed in that documentation chapter. This involves con!guring a connection to

your server via RDS in the ColdFusion 8 Eclipse plugins interface, con!guring mappings

if ColdFusion and Eclipse are not on the same machine, and switching to the Eclipse

Debug perspective. While FusionDebug does not rely on the ColdFusion RDS feature,

the CF8 debugger does. All these steps are described in the docs mentioned above, as

well as at the top of another page in that chapter, “Using the ColdFusion Debugger”, at

http://livedocs.adobe.com/coldfusion/8/htmldocs/usingdebugger_6.html.

Besides the Adobe documentation, there’s a very nice Adobe Dev Center article by Brian

Szoszorek, “Using the ColdFusion 8 Step-Through Debugger for Eclipse”, which walks carefully

through the con!guration and setup of the Admin and the debugger, with ample screenshots.

It’s available online at http://www.adobe.com/devnet/coldfusion/articles/debugger.html.

I presume you’ll read those resources for setting up ColdFusion and the debugger, but I do

address some aspects of these con!guration features later in the article.

First Stop: Setting a Breakpoint
Now that you’ve con!gured both the debugger and ColdFusion itself, and you’ve started

the debugger (as described in the docs mentioned above), open the !le you wish to debug

in the Eclipse environment. You can begin by telling the tool that you want to stop execution

on a given line of CFML code. This is called setting a breakpoint. You just right-click on the

line of code in the Eclipse editor, and choose Toggle Breakpoint. Where in FusionDebug you

could right-click anywhere on the line, in the CF8 debugger, you must be sure to place the

mouse over the line number (if shown) or over the area just to the left of that (the grey area

on the left in Figure 1 below). You can also use the shortcut, Ctrl-Shift-B.

When the CFML template you’re working with is requested, and that line of code would be

executed, the program halts and the debugger interface re%ects that execution has halted.

It will open the !le if it’s not already open, and show the line of code on which execution

has stopped. (See Figure 1)

The blue dot to the left of the line shows where a breakpoint has been set, and the blue arrow

and shading on the line indicates that control has halted on that line. Those familiar with

FusionDebug will notice that this part of the interface is the same. In fact, both debuggers

are really leveraging underlying features of the Eclipse interface and its built-in debugging

functionality. Still, without the CF8 debugger or FusionDebug, it wouldn’t be possible to

debug CFML requests using Eclipse alone.

90 Tools The Fusion Authority Quarterly Update

You may wonder what happens

when a user requests a page

that is being debugged. He’ll

generally see the page request

waiting in the browser, as if the

request is just taking a long

time.

Both CFML debuggers can

intercept a request from any

user, not just the user who

initiated the debugging session. This is a two-edged sword:

The good news is that you can use this feature to intercept a request other than one you yourself �
initiated. How often have you tried to understand why a problem was happening to a user in
production or testing, but been unable to recreate it locally? Or, the debugger can intercept a
request made by something other than a browser, such as web services, Flex, Ajax, and more.
More on all that in the sidebar, “Why Use a Step Debugger?”

Using this feature also means that anyone on that server being debugged will be a"ected �
when you set a breakpoint. This certainly speaks to taking caution about setting breakpoints in
production. Still, it’s nifty that you can. But remember – with power comes responsibility.

Here’s another area where the CF8 debugger di"ers from FusionDebug. As I explained in my

FusionDebug article, FusionDebug intercepts all requests from all such users, which means

you may see several di"erent requests piling up in the interface, ready for you to debug. The

CF8 debugger works di"erently; it stops only the !rst request it receives for a given page.

All other requests for that page are ignored by the debugger while the !rst request is being

debugged.

Observing Program State Information (Variables)
Being able to stop the program in its tracks may seem only mildly interesting, but the real

power lies in your ability to learn a lot about what was going on in the program while you

are stopped at a breakpoint in the debugger. For instance, you can see all the variables that

may have been set either in the program or perhaps in other templates before this one

executed.

The CF8 debugger (again, just like FusionDebug) provides a Variables view, which in the

case of the code as seen in Figure 1, would show the following:

You can see (in Figure 2) that a

structure with a key and an array

has been created. You can expand

the local Variables scope, and

any Application, Session, Server, or

other scopes. (You can con!gure

which scopes are viewable in

the Debug Settings preferences

page, as discussed in the Adobe

documentation mentioned above

and later in this article.) If you were

stopped within a method, you

could also see the local Var and This

scopes. Isn’t that a whole lot easier

Figure 1: Simple sample code

Figure 2: Variables view

The Fusion Authority Quarterly Update Tools 91

than putting in CFDUMPs or CFOUTPUTs, and having to remember to remove them? As I discuss

in the sidebar, there are also situations where you simply can’t use CFDUMP or CFOUTPUT.

If you had a large number of variables, exploring this Variables view would be tedious.

Another option is to set a number of watched expressions. This is more like using old-style

outputs, except they never send output to the browser; instead, the results are shown

inside the debugger. With this Expressions panel, you can choose to watch any variable or

expression. (An expression can be anything you might put on the right side of the “=” of a

CFSET, or in a CFIF condition, including variables, functions, and so on.) Here’s an example that

shows a few:

You can enter expressions

by right-clicking in

the Expressions View,

selecting Add Watch

Expression, and typing in

the expression manually.

Unlike FusionDebug,

you cannot highlight an

expression in the code

editor, and right-click and

select Watch Expression. And though the CF8 debugger won’t show a Set Variable option

when you right-click such a variable within code, you can indeed right-click on a variable

in either the variables or expressions pages in order to set that variable on the %y to a new

value while debugging an application.

Stepping Through Lines of Code
While it is useful to stop at one point in the program and view all of the above, the ability

to step through your code is one of the debugger’s most important and fundamental

features.

Consider again the code in Figure 1, where we were stopped on line 4. How would we tell

the debugger to proceed? Notice the icons at the top of the Debug pane of the debugger

interface:

 These icons tell the program

whether and how to continue

executing code. The Step

Over button selected in

Figure 4 is perhaps the most

commonly used, though the

one to the left of it is Step Into,

which is discussed later. When

you select Step Over, the debugger simply executes the next line of code (line 6 in Figure 1).

All the examples so far have talked about things you can do while stopped at a breakpoint.

These apply to code you’ve reached by stepping through code as well.

Understanding the Stack Trace
The Debug pane also presents a representation of the stack trace for a current request,

which is especially helpful when the line being executed is embedded deep within a multi-

Figure 3: Expressions view

Figure 4: Debug pane

92 Tools The Fusion Authority Quarterly Update

!le page request. For instance, consider the following code, which is an application built in

Fusebox 5:

Let’s see how the debug view (stack trace) appears at this point in this sample application.

This re%ects not only that we’re stopped on line 5 of dsp_productdetails.cfm, but also

that we got there from store.productdetails.cfm, which must have called or included dsp_

productdetails.cfm page on its own line 15, and so on. It’s great to be able to see, at any

point of execution in our request, how we got to where we are, based on which !les were

called. Note that you can double-click on any of the lines shown in that stack trace to jump

to the indicated !le and line of code.

Stepping into Other Files
Getting back to stepping through code, we can see in Figure 5 that the debugger is stopped

on line 5, which is about to call something called product.getDescription(). This looks like a

CFC (represented by product) calling a method called getDescription. But can the debugger

help us make sure that this is a CFC? Yes it can. Look at Figure 7, which shows that I’ve selected

Figure 5: Fusebox sample code

Figure 6: Debug (stack trace) view of Fusebox application

Figure 7: Variables view showing CFC metadata

The Fusion Authority Quarterly Update Tools 93

the path of the products variable in the Variables view, and I can see that it is indeed a CFC. If

I expand it, I can see various metadata, such as the actual !le path where the CFC exists. This

can be powerful information when you’re trying to understand your location in a complex,

multi-!le environment.

Since the next line of code is a call to a CFC method, we can follow the %ow of execution into

that !le. We can also do this with custom tags, included !les, and so on. If we were to use

Step Into, the icon just to the left of Step Over, then the debugger would open product.cfc

(in the location indicated in Figure 7) and stop at the !rst line of CFML within that.

You could use the Step Return button to execute the current !le without further stepping.

When you’ve stepped into a !le, it will run the remainder of the !le that was stepped into

(unless there were any remaining breakpoint in the !le) and then stop before execution of

the next line of CFML code in the calling page. The Step Return button is enabled in Figure

6, and is to the right of Step Over and Step Into.

The left-most of those icons, which looks like a green arrow, is called Resume. It would let

the request run to completion unless it hit another breakpoint.

Stopping on an Error
It’s great to set a breakpoint and stop on a particular line of code, but sometimes you don’t

know exactly where you’re getting an error. Is it possible to get the debugger to stop when

an error is reached? Yes! Simply enable the option “Break on a CFML runtime exception”

in the Eclipse interface’s Window > Preferences > ColdFusion > Debug Settings. I’ve had

mixed success with this feature: sometimes it doesn’t stop when an error occurs. It could be

a problem of con!guration on my system, so your mileage may vary.

And Still Much More…
There’s a lot more to show, but this should be enough to whet the whistle of those who

haven’t explored a debugger before.

Con$guration and Security
A few con!guration and security issues ought to at least be mentioned. Three con!guration

pages in the Eclipse interface are devoted to the CF8 debugger or related features.

Window>Preferences, and from that dialogue, choose the ColdFusion section to !nd the

Debug Mappings, Debug Settings, and RDS Con!guration pages.

Con$guring RDS in both Eclipse and ColdFusion’s Admin
I mentioned that the CF8 debugger relies on ColdFusion’s RDS security. RDS (or Remote

Development Services) is the same feature used to control access to !les, databases, and

CFCs on a ColdFusion server when they are accessed from editors like ColdFusion Studio,

HomeSite+, Dreamweaver, and Eclipse (with the Adobe Eclipse extensions).

ColdFusion must be con!gured to support RDS. Further, you need to understand the form

of RDS authentication enabled for your ColdFusion server, as you’ll need to provide that

information in the RD Con!guration interface in Eclipse. The ColdFusion Administrator

page, Security > RDS > RDS Authentication, determines the RDS authentication to be used

for that server.

If the “No authentication is needed” option is set, then no password is required. Of course this �
con!guration is dangerous if your server is accessible over any network, intranet or internet.

If the option is set to “Use a single password only”, then you would provide in the Eclipse setting �
whatever password is de!ned as the RDS Single Password option on the server.

94 Tools The Fusion Authority Quarterly Update

If “Separate user name and password authentication” is selected (an option available only on �
the Enterprise and Developer editions), then both a username and password would be required
to access the server via RDS, where the usernames are de!ned in the Administrator page
Security > User Manager.

Discussion of the User Manager interface is beyond the scope of this article. By default there

are no con!gured user accounts. To enable user-based access you must !rst create user

accounts and passwords, and assign roles to those accounts. To use the debugger, such

a user would need the Allow RDS Access option enabled. He does not need to be given

any Admin access. You may notice an available sandbox role that you could allow called

Debugging and Logging > Debugging, but that’s for accessing the debugging page in the

Admin console.

If you’re having any problems getting the CF8 debugger to work, !rst con!rm whether the

RDS setup on Eclipse is working for the connection to the server. Look at the tool in Window

>Show View > Other > ColdFusion and then use either the RDS Fileview or RDS Dataview

tools to con!rm that you can connect to the server using one of them. If not, then you won’t

be able to do debugging.

In the CF8 debugger, it’s possible to enable multiple developers to debug a single server.

To do this, set the RDS con!guration above, using multiple user accounts. Additionally, a

setting in the ColdFusion 8 Administrator, Debugging & Logging > Debugger Settings >

Maximum Simultaneous Debugging Sessions, which defaults to !ve, also controls how

many developers can do debugging at once or how many single developers can start

multiple debugging sessions.

Con$guring the Multiserver or J2EE Con$guration
There are a couple of !nal points to make regarding the use of ColdFusion in the Multiserver

(multiple instance) or J2EE con!gurations (as opposed to the perhaps more commonly used

Standalone con!guration of ColdFusion).

With the Standalone edition, when you enable the debugger in the ColdFusion 8

Administrator, ColdFusion automatically modi!es the jvm.con!g for the server. With the

Multiserver or J2EE con!gurations, ColdFusion requires that you make the change yourself,

adding the following string to the end of the java.args line:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Use whatever port you would have entered in the ColdFusion Admin page for enabling line

debugging. Whenever you have to modify your jvm.con!g, be sure to !rst make a backup of

the !le, because if you make a mistake then the ColdFusion server won’t be able to start.

Second, in the Multiserver con!guration, each instance (the ColdFusion instance, the admin

instance, and any new instances you create) will by default share a single jvm.con!g. That’s

acceptable in simple setups, but when using the debugger you may !nd that you need to

create a separate jvm.con!g for each instance. Some do that anyway, perhaps to create di"erent

con!gurations (and therefore di"erent jvm.con!g !les) for each instance with di"erent JVM

memory, or di"erent garbage collection, or even di"erent JVMs. You can !nd a couple of blog

entries discussing how to setup di"erent jvm.con!g !les for each instance, at:

http://mkruger.cfwebtools.com/index.cfm/2006/4/17/multiserver

http://www.alagad.com/go/blog-entry/cf7-cf8-jrun-and-the-jvm

The Fusion Authority Quarterly Update Tools 95

Third, if you want to use the Sandbox security feature in the Multiserver or J2EE con!guration,

you’ll need to enable a Java security manager (java.lang.SecurityManager), which is also

done by de!ning the JVM arguments in the jvm.con!g !le. For JRun, this is the java.args line

in the jrun_root/jvm.con!g !le:

-Djava.security.manager -Djava.security.policy=”cf_root/WEB-INF/cfusion/lib/coldfusion.

policy” -Djava.security.auth.policy=”cf_root/WEB-INF/cfusion/lib/neo_jaas.policy”

Di%erences Between the Debugger and FusionDebug
The focus in this article has been on the CF8 debugger, but along the way I’ve mentioned

a few ways in which the debugger is the same as or di"erent from FusionDebug. Let’s do a

quick recap here. First, the CF8 debugger runs only on ColdFusion 8, where FusionDebug

works with ColdFusion 6, 7, and 8. On the other hand, you can use the CF8 debugger with

the free Developer edition of ColdFusion, but then you can’t use it for multiple developers

(or rather, you can’t use it for any more than ColdFusion will support for making requests

against the Developer edition, which is localhost plus two IP addresses.)

Some of the advantages of the CF8 debugger are related to use by multiple developers.

I’ve mentioned that the debugger does permit multiple developers to debug a single

ColdFusion server, and that it uses RDS to control such access. An administrator can control

debugger access using a single RDS password shared by all, or separate RDS accounts per

user in the Enterprise or Developer editions. For some, the fact that the debugger requires

RDS access may be a disadvantage. They’ve been conditioned to regard RDS as something

that should be disabled. Since the debugger is primarily a developer tool, though, as is RDS,

this shouldn’t be as much of a concern (though certainly for public production or central test

environments, it may be something to consider carefully due to the security implications of

enabling RDS on such public servers.)

Related to the multiple developer feature, the CF8 debugger only stops the !rst user making

a certain request, while FusionDebug lets you intercept all requests for a page, from all users.

That could be an advantage or a disadvantage. You may wish (with the CF8 debugger) that

you could see the requests of more than the !rst user hitting a page, or you may be annoyed

(by FusionDebug) that it lets you intercept the requests of any user hitting a page.

But the debugger adds something that FusionDebug lacks, which I haven’t mentioned

previously; the debugger adds another tab next to Variables and Breakpoints called Debug

Output Bu"er, which shows the HTML or other content generated to that point in the %ow

of execution. Very handy. Also, as I mentioned, the debugger lets you stop on an error.

Conclusion
That’s a lengthy review of features, bene!ts, and challenges in using the ColdFusion

8 debugger. I do hope that the introduction to step debugging and the debugger

interface and features will help you get started. For more on step debugging in CFML,

you may want to review the series of blog entries I’ve done previously on FusionDebug, at
http://carehart.org/blog/client/index.cfm/fusiondebug, or my previous article in Fusion

Authority Quarterly Update Volume 1 Issue 2.

You can also read more about the CF8 debugger in the CFML manual, ColdFusion Developer’s

Guide, in the chapter, “Using the ColdFusion Debugger”, as well as in the DevCenter article,

“Using the ColdFusion 8 step-through debugger for Eclipse”, both of whose URLs I o"ered

in the Getting Started section above.

96 Tools The Fusion Authority Quarterly Update

A veteran ColdFusion developer since 1997, Charlie Arehart is a longtime contributor to

the community and a recognized Adobe Community Expert. He’s a certi!ed Advanced

ColdFusion Developer and Instructor for ColdFusion 4/5/6/7 who served as tech editor of

the ColdFusion Developers until 2003. Now an independent contractor living in Alpharetta

GA, Charlie provides high-level troubleshooting/tuning assistance and training/mentoring

for ColdFusion teams (carehart.org/consulting). He helps run the Online ColdFusion Meetup

(coldfusionmeetup.com), an online ColdFusion user group), is a contributor to the ColdFusion

8 WACK books by Ben Forta, and is frequently invited to speak at developer conferences and

user groups worldwide.

PROFESSIONAL COLDFUSION CONTENT FOR THE COLDFUSION PROFESSIONAL

Vol. II Issue IIIVol. II Issu

Quarterly UpdateQuarterly UpdateQu

The

V
O

L
.I

I
IS

S
U

E
 I

II

$

1
4

.9
5

ColdFusio
n 8

Specia
l E

dit
io

n

4
.9

5

Subscribe to Fusion Authority Quarterly Update!

Be in the know… For the low price of $49.95 a year (that’s 17% o�

the regular rate of $14.95 an issue), you’ll get four issues packed with

the best ColdFusion content you can !nd. Our accurate, well-written

articles will make you a better ColdFusion professional.

House of Fusion

3501 Avenue K

Brooklyn, NY 11210

(For more information, see http://www.fusionauthority.com/quarterly)

The Fusion Authority Quarterly Update Tools 97

